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SUMMARY 

From a general unequal probability sample a standard estimator for Karl Pearson’s product-moment correlation coefficient 
between two variables in a finite population is taken as a non-linear function of unbiased estimators respectively for six specific 
population totals. By Taylor series expansion an approximate variance estimator for it is also available. The corresponding 
Spearman’s rank correlation coefficient has no such facility because sample ranks bear no discernible relations to individual-wise 
population ranks. But Kendall’s rank correlation coefficient “Tau” has no such shortcoming. Rather, it is still simpler involving only 
‘totals of three variables, instead of six’ and the corresponding estimators. Applying Taylor series expansion its accuracy level is 
examined. Simulation-based numerical results are also presented that look encouraging. 
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1. INTRODUCTION 
Let x and y be two real variables with values 

xi, yi for individuals labelled i in a finite survey 
population U = (1,2,3,…,i,…,N). The product-
moment correlation coefficient between them is 
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(1.1) 

This is a non-linear function of six population 
totals, namely 휃 =N, 휃 =∑ 푥 푦 , 휃 =∑ 푥 , 
휃 =∑ 푦 , 휃 =∑ 푥 , 휃 =∑ 푦 . If a 
sample s is taken from U with a probability p(s) 
according to a design admitting positive first 
order and second order inclusion-probabilities  

πi = ∑ 푝(s)∋  and πij=∑ 푝(s)∋ , , then a standard 
estimator r for RN is taken as 
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(1.2) 

Like RN this r also takes values in the closed 
interval [-1, +1]. Writing r = f (t1, t2, t3, t4, t5, t6) = 
f(t) as a function of the respective unbiased 
estimators tj for 휃 , j=1, 2, 3, 4, 5, 6, assuming 
large sample-size, writing  = (1, 2, 3, 4, 5, 
6), one may expand f(t) about f() = RN and by 
Taylor series expansion neglecting higher order 
terms write 
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f(t) ≃f(θ)+∑ (풕)

풕 휽
푡 − 휃   

            = f(θ)+∑ 휆 푡 − 휃 , writing 휆  = (풕)

풕 휽
 

This well-known result yields a convenient 
approximate formula for V(r) = Vf(t) leading to a 
simple formula for an estimator for it which is 
approximately unbiased for V(r). If, we have xi, yi 
as the values of ranks of the units of U according 
to two qualitative characteristics A and B, say, 
then RN is given by the Spearman’s rank 
correlation coefficient 

푅  = 1 - ∑
( )

, 푑 = 푦 − 푥 , 푖휖푈.  (1.3) 

This is useful; for example, Dubey and 
Gangopadhyay (1998) used this in an important 
Indian context. Unfortunately, even though RS 
and RN are same, a corresponding simple 
estimator like r cannot be employed for RS by the 
above Taylor series approach. The reason is 
“sample ranks bear no natural relations to the 
population ranks” and tj’s corresponding to the 
휃 ’s cannot be obtained. Dubey et al. (1998) did 
not say anything about the accuracy of 
Spearman’s rank correlation coefficients they 
referred to. 

In this new work we intend to make it a point 
that if circumstances demand (i) obtaining rank 
correlation coefficients and (ii) assessing their 
accuracy levels from a sample chosen according 
to a general sampling design, one may safely 
resort to using Kendall’s (1938) rank correlation 
coefficient called “Tau”, denoted by τ. 

From Kendall (1955), τ may be regarded as a 
product-moment coefficient. Writing ui  = rank 
according to A and vi = rank according to B, for 
the pair (i,j), with i < j, let aij and bij be such that 

aij = 
+ 1 if ui < uj
     0 if ui = uj 
− 1 if ui > uj

 

bij = 
+ 1 if vi < vj
     0 if vi = vj 
− 1 if vi > vj

 

Then, 

τ =
∑ ∑ aij bij

∑ ∑ ∑ ∑
 (1.4) 

is Kendall’s Tau. 
In Section 2 we propose an estimator for τ, 

along with variance estimator. Confidence 
Intervals for τ are also derived. Numerical 
calculations regarding the estimation of 
Kendall’s τ using hypothetical data are presented. 

2. ESTIMATION FROM SAMPLES 

2.1 Estimation of Kendall’s τ 
A sample s is chosen from U with a pre-

assigned probability p(s) with first order inclusion 
probability πi = ∑ p(푠)∋  > 0, i, second order 
inclusion probability πij = ∑ p(푠)∋ ,  > 0,  i≠j, 
third order inclusion probability πijk=∑ p(푠)∋ , ,  
> 0,  i≠j≠k and fourth order inclusion probability 
πijkl=∑ p(푠)∋ , , ,  > 0,  i≠j≠k≠l. Assume each s 
contains n units each distinct. The sampled units 
are ranked with respect to A as 푢 ,푢 ,…,푢  and 
with respect to B as 푣 ,푣 ,…,푣 . Let us write 

τ =
∑ ∑ aij bij

∑ ∑ ∑ ∑
= = f(휃) (2.1.1) 

where   휃 =∑ ∑ aij bij,  

  휃 =∑ ∑ 푎  

and 휃 =∑ ∑ 푏 . 
for i<j, let 푎  and 푏  be such that 

푎  = 
+ 1 if 푢 < 푢
     0 if 푢 = 푢
− 1 if 푢 > 푢

 

푏  = 
+ 1 if 푣 < 푣
     0 if 푣 = 푣
− 1 if 푣 > 푣

 

Clearly, 푎 = aij and 푏 = bij irrespective of 
the change in ranks of the units in the population 
and the sample. 

Let us use the following Horvitz Thompson 
(1952) unbiased estimators for 휃 , 휃  and 휃 . 
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Consider t1 = ∑ ∑  
∈  

Ep(t1) = ∑ p(푠)∑ ∑  
∈   

= ∑ ∑ ∑ p(푠)∋ ,   

= ∑ ∑  
휋   

= ∑ ∑ 푎  푏   
= ∑ ∑ aij bij = 휃 ;  

t2 = ∑ ∑ ∈  

and t3 = ∑ ∑ ∈ , which are unbiased 

estimators of 휃  and 휃  respectively. 
We take 
τ = f(휃) = f(풕) =  

 
  

= 
∑ ∑

 
∈

∑ ∑ ∈ ∑ ∑ ∈

  (2.1.2) 

as an estimator for τ and it is approximately 
unbiased for τ for large sample size n. 

By Cauchy-Schwartz Inequality, 
2
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2.2 Calculation of Vp(훕) and its Estimate using 
Linearization Technique 

τ = f(t)=  

Using Taylor series expansion and neglecting 
higher order terms, we get, approximately 
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+ 2∑ ∑ ∑  

+ 2∑ ∑ ∑   

+∑ ∑ ∑ ∑ −∑ ∑ Ψ −

−2∑ ∑ ∑ Ψ Ψ − 2∑ ∑ ∑ Ψ Ψ  

−2 Ψ Ψ  

− Ψ Ψ  

=∑ ∑ Ψ ( ) +

+2∑ ∑ ∑ Ψ Ψ ( ) +

+2∑ ∑ ∑ Ψ Ψ ( )
 

+2∑ ∑ ∑ Ψ Ψ ( )
+

∑ ∑ ∑ ∑ Ψ Ψ (  )
 (2.2.1) 

V (τ)=V {f(퐭)}=∑ ∑ Ψ∈ +

2∑ ∑ ∑ Ψ Ψ ( )
∈  

+2∑ ∑ ∑ Ψ Ψ ( )
∈ +

2∑ ∑ ∑ Ψ Ψ ( )
∈  

+∑ ∑ ∑ ∑ Ψ Ψ ( )
∈ ,(2.2.2) 

where Ψ = 푎 푏 + 푎 + 푏  

and similarly Ψ , Ψ , Ψ  and Ψ  are defined. 

⇒ Ep [V (τ)]   Vp(τ). 

2.3 Confidence Interval (CI) for 훕 
A 100 (1-α)% Confidence Interval (CI) for τ 

can be obtained by two methods: 
(a) Method 1 

Using chebychev’s in inequality we can 
approximately write, negelechng the bas term  

P |τ −  τ| ≥ t Vp(τ) ≤  for t > 0 

⟹P |τ −  τ| ≤ t Vp(τ) ≥ 1−  

Taking  = α 

⟹ t = +   .  

Then, 

P τ − ( ) ≤ τ ≤ τ + ( ) ≥ 1 − α (2.3.1) 

An approximate 100 (1-α)% Confidence 
Interval for τ is given by 

τ − ( ) , τ + ( ) . 

(b) Method 2 
Assuming τ~Normal (τ, Vp(τ)), it is implied 

that 
 

( )
~tn-1 

where tn-1 is the Student’s t-distribution with n-1 
degrees of freedom.  

An approximate 100 (1-α)% Confidence 
Interval for τ is derived from:  

P |  |

( )
≤ t , ≥ 1− α 

where t ,  is the upper 100 ( )% point of the 
Student’s t-distribution with n-1 degrees of 
freedom.  

or, P τ − V (τ)     t , ≤ τ ≤

τ+              ≤ τ + V (τ)     t , ≥ 1 − α. (2.3.2) 
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An approximate 100 (1-α)% Confidence 
Interval for τ is given by 

τ − V (τ)     t , , τ + V (τ)  t , . 

Average length of the Confidence Interval in 
Method 2 comes out to be 푡 , which is smaller 

than that obtained from Method 1 which is 
√

 for 
all n (considering 푛 ≥ 3). 

3. NUMERICAL PRESENTATION 
Consider the following hypothetical 

population consisting of N=37 households. The 
values corresponding to A and B are ‘y’ and ‘x’ 
respectively where A is the ‘monthly expenditure 
on household’ and B is the ‘necessary medical 
expenses of the household’. Let ‘w’, the ‘number 
of household members’ taken as the size measure 
for sample selection. 

1000 samples each of size n=11 are chosen 
by employing a sampling scheme by Seth (1966) 
as described by Chaudhuri and Pal (2002). In this 
sampling scheme, the first two units are chosen 
according to Brewer (1963) and the next 9 units 
following Seth (1966). The first unit i is chosen 
with a probability proportional to  

qi =
( ) where pi = 

∑
. 

From the remaining units, a second unit 
j(≠ i) is chosen with a probability . 

For this scheme, πi and πij’s based on the first 
two draws are 

πi(2)=2pi  (3.1) 

and πij(2)= pipj +  

where D = ∑   (3.2) 

The next n-2 = 9 units are chosen from the 
remaining N-2 = 35 units by SRSWOR as done 
by Seth (1966). For the above sampling scheme 
of choosing n units out of N, the following were 

derived (cf Chaudhuri and Pal 2002) for the  
πi and πij’s based on n draws: 

πi(n)=   i n 2 (N n)π (2)     (3.3) 

and πij (n) = πij(2) + [πi(2) + πj(2) − 2πij(2)] 

+ 1-πi(2) − πj(2) + πij(2) .  (3.4) 

Clearly, third and fourth order inclusion 
probabilities are also required for our 
calculations. We have further derived: 

πijk(n)= [πij(2)+πik(2)+πjk(2)] 

+
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 (3.6) 

such that ∑ πijk(n)( , ) =(n-2) πij(n)  

and ∑ πijkl(n)( , , ) =(n-3) πijk(n). 

We calculate τ, V (τ), Coefficient of 

Variation (CV) = 100 
( )

 and 95% approximate 
Confidence Intervals (CI) for τ by both the 
methods 1 and 2 for all the 1000 samples. Then 
based on the 1000 samples we calculate: 

ACV (Average Coefficient of Variation) = 
the average of the coefficient of variation over 
the 1000 replicates, 

 

 



6 Arijit Chaudhuri et al. / Journal of the Indian Society of Agricultural Statistics 70(1) 2016  1-6 
 

Table 1 

Unit w y(Rs.) x(Rs.) Unit w y(Rs.) x(Rs.) Unit w y(Rs.) x(Rs.) Unit w y(Rs.) x(Rs.) 
1 5 5700 2700 11 3 3030 1650 21 3 3885 1573 31 2 3615 1402 
2 6 4020 1875 12 4 2835 1239 22 2 2175 1277 32 9 11062 4500 
3 2 2145 1200 13 3 2775 1425 23 5 2436 1110 33 4 4200 1589 
4 3 2190 1320 14 5 3510 1680 24 1 1695 900 34 7 9200 3999 
5 4 4500 2100 15 2 2730 1360 25 5 2115 947 35 8 8125 3000 
6 5 3210 1350 16 2 4080 1500 26 5 3105 1260 36 3 3135 1125 
7 3 3600 1877 17 5 4600 1429 27 9 6037 2748 37 2 2910 1307 
8 2 2199 975 18 6 10375 2751 28 5 3255 1426 
9 5 2790 1275 19 2 4230 1453 29 9 13500 7998 
10 2 2400 1353 20 2 2625 1155 30 5 3120 1479 

 

ARB (Absolute Relative Bias) = ̅ , where 

푒̅ = ∑ 휏̂  , 휏̂  being the ithsample estimate 
of 휏, 

ACP (Actual Coverage Proportion) 
 = percentage of replicates out of 1000 
for which the CI covers 휏 and  

AL (Average Length) = average length of the 
CI over 1000 replicates. 

AVE (Avergae Variance estimate) 
= ∑ V (τ) . 

The results are tabulated below: 

4. SUMMARY TABLE FINDINGS FOR 
ACCURACY IN ESTIMATION 

Table 2 

휏 = 0.718, Vp (τ̂) = 0.0145  
ACV 16.550 
ARB 0.00261 
ACP(method 1) 95.10% 
AL(method 1) 0.993 
ACP(method 2) 84.70% 
AL(method 2) 0.435 
AVE 0.0142 

Table 3. A few out of the 1000 sample estimates of 휏(= 0.718) 

0.742 0.740 0.728 0.714 0.690 0.737 0.662 0.695 0.731 0.732 
0.662 0.673 0.694 0.665 0.724 0.741 0.743 0.691 0.747 0.704 
0.691 0.734 0.694 0.732 0.744 0.729 0.700 0.701 0.661 0.740 
0.724 0.733 0.737 0.677 0.665 0.725 0.700 0.737 0.724 0.702 
0.661 0.698 0.748 0.688 0.693 0.694 0.709 0.733 0.669 0.733 
0.665 0.719 0.702 0.732 0.737 0.684 0.701 0.746 0.710 0.679 
0.665 0.661 0.727 0.724 0.662 0.685 0.699 0.741 0.734 0.708 
0.729 0.703 0.660 0.740 0.700 0.661 0.690 0.661 0.693 0.695 
0.748 0.722 0.735 0.699 0.742 0.690 0.700 0.677 0.660 0.674 
0.728 0.745 0.661 0.671 0.698 0.727 0.690 0.698 0.710 0.726 

5. CONCLUSION 
From the above tables it can be concluded 

that the proposed estimator is not only good but 
also provides a very accurate estimate of its 
variance as well as coefficient of variation. The 
relative bias of the estimate is extremely low 
which is desirable. Estimation of Kendall’s Rank 
Correlation Coefficient for a finite population is 
worth applying because accuracy of the estimator 
is now easy to calculate. Although ACP 
calculated using Confidence Interval for Tau by 
using Chebychev’s Inequality is closer to 95% 
than that calculated by assuming Normality, AL 
is always much smaller while using method 2 
than the case when method 1 is used. 

REFERENCES 
Brewer, K.R.W. (1963). A model of systematic sampling with 

unequal probabilities. Austr. J. Statist., 5, 5-13. 

Chaudhuri, A. (2010). Essentials of Survey Sampling. Prentice 
Hall Publications Private Limited. 

Chaudhuri, A. and Pal, S. (2002). On certain alternative mean 
square error estimators in complex survey sampling. J. 
Statist. Plan. Inf., 104, 363-375. 

Dubey, A. and Gangopadhyay, S. (1998). Counting the Poor, 
Sarvekshana Analytical Report Number 1. Department of 
Statistics, Govt. of India. 

Kendall, M.G. (1955). Rank Correlation Methods. Charles Griffin 
and Company Limited. 

Seth, G.R. (1966). On estimators of variance of estimate of 
population total in varying probabilities. J. Ind. Soc. Agric. 
Statist., 18(2), 52-56. 

 


